
International Journal of Theoretical Physics, Vol. 45, No. 4, April 2006 ( C© 2006)
DOI: 10.1007/s10773-006-9070-y

Separation of Variables for a Lattice Integrable
System and the Inverse Problem

Supriya Mukherjee,1,3 A. Ghose Choudhury,2

and A. Roy Chowdhury1

Received May 19, 2005; accepted January 26, 2006
Published Online April 12, 2006

We investigate the relation between the local variables of a discrete integrable lattice
system and the corresponding separation variables, derived from the associated spectral
curve. In particular, we have shown how the inverse transformation from the separation
variables to the discrete lattice variables may be factorized as a sequence of canonical
transformations.
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1. INTRODUCTION

Of late there has been a great deal of interest in discrete integrable systems,
owing to their numerous interesting properties. One such property, which has
emerged lately, is the existence of the so called spectral curve associated with an
integrable system (Sklyanin, 1999). The latter in turn is closely connected with the
motion of separability. Indeed, it is well known that the technique of separation of
variables provides an invaluable tool for the analytic construction of action-angle
variables of an integrable system (Sklyanin, 1999). Furthermore, it may be shown
that the locus of points, given by the separation variables, define in fact the spectral
curve.

On the other hand, the concept of an r-matrix algebra marks a major de-
velopment in theory of nonlinear integrable systems especially in regard to their
Hamiltonian nature (Faddeev and Takhtajan, 1988). It provides an elegant for-
malism for proving the Poisson involutiveness of the integral of motions for such
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systems. However, it was only in the eighties that the connection between the
r-matrix formalism and separation variables of such systems clearly emerged as a
result of the efforts of Komarov (1982), Sklyanin (1995) and other researchers of
the St. Petersburg School.

In this communication, we examine the nature of the relationship between the
separation variables of a discrete lattice integrable system and the corresponding
local lattice variables. In general, the nature of the transformation relations between
these two sets of variables is rather complicated and an explicit determination of
the generating function proves to be rather daunting. The existence of the latter
is essential to guarantee the canonical nature of the transformation. However,
recently (Christiansen et al., 1993) has shown that, not only does the inverse
transformation between the separation variables and the local variables exists,
but also that these transformations can even be broken down into a sequence of
transformations each with a generating function.

The organization of the paper is as follows. In Section 2, we describe the
basic features of the discrete model under consideration. The r-matrix algebra of
the monodromy matrix is explicitly solved, as also the leading order structures
of its elements. In Section 3, we introduce the spectral curve and separation
representation for the elements of the monodromy matrix. In Section 4, which
constitutes the main body of the paper, we derive explicitly the inverse separating
map between the separation variables and the local lattice variables defining our
system. The canonical nature of this mapping is displayed by working out the
corresponding generating function.

2. FORMULATION

We begin by considering a discrete integrable system which is described by
a local Lax operator ln(u) of the form

ln(u) =
(

u + qnpn −pn

q2
npn u − qnpn

)
(2.1)

Here u is the complex spectral parameter and qn and pn are the nonlinear variables
defined at the nth lattice points. They satisfy the canonical Poisson bracket

{qk, qj } = {pk, pj } = 0 for all k, j = 1, 2, . . . , n and {qk, pj } = δkj (2.2)

It is a matter of simple computation to show that

{ln(u) ⊗, lm(v)} = [r(u − v), ln(u) ⊗ lm(v)]δmn (2.3)
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where r(u − v) represents the classical r-matrix given by

r(u) = P

u
= 1

u




1 0 0 0
0 0 1 0
0 1 0 0
0 0 0 1


 ,

with P being the permutation matrix satisfying P 2 = I . We define the monodromy
matrix TN (u) as the ordered product of ln(u)′s over the entire lattice, i.e.

TN (u) =
1∏

n=N

lN (u) = lN (u)lN−1(u) · · · l2(u)ln(u) (2.4)

Upon using (2.3) it is easy to deduce that

{TN (v) ⊗, TN (v)} = [r(u − v), TN (v) ⊗ TN (v)] (2.5)

Consequently, we infer that structurally the Poisson algebra of ln(u) and TN (u)
are identical. In the literature on nonlinear integrable systems Eq. (2.5) is usually
referred to as the quadratic r-matrix algebra. In case of 2 × 2 local Lax operators,
the monodromy matrix is itself a 2 × 2 matrix which may formally be written as,

TN (u) =
1∏

n=N

ln(u) ≡
(

AN (u) BN (u)

CN (u) DN (u)

)
(2.6)

The Sklyanin algebra (2.5) then takes the following explicit form, namely

{AN (u), AN (u)} = {BN (u), BN (v)} = {CN (u), CN (v)} = {DN (u),DN (v)} = 0,

{CN (u), AN (v)} = 1

u − v
{AN (u)CN (v) − AN (v)CN (u)},

{AN (u),DN (v)} = 1

u − v
{CN (u)BN (v) − CN (v)BN (u)},

{BN (u), AN (v)} = 1

u − v
{BN (u)AN (v) − BN (v)AN (u)},

{CN (u),DN (v)} = 1

u − v
{CN (u)DN (v) − CN (v)DN (u)},

{BN (u),DN (v)} = 1

u − v
{DN (u)BN (v) − DN (v)BN (u)}, (2.7)

From the definition of monodromy operator in (2.6) and the form of the local Lax
operator as given by (2.1) by explicit calculation obtain the leading order terms of
the matrix elements AN (u), BN (u) etc. These are as follows

AN (u) = uN +
(∑N

i=1
qipi

)
uN−1 + . . . (2.8a)
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BN (u) =
(
−
∑N

i=1
pi

)
uN−1 + . . . (2.8b)

CN (u) =
(∑N

i=1
q2

i pi

)
uN−1 + . . . (2.8c)

DN (u) = uN −
(∑N

i=1
qipi

)
uN−1 + . . . (2.8d)

Note that detln(u) = u2 so that detTN (u) = u2N . Now if at each lattice site an
inhomogenity parameter cn is introduced, then the local Lax operator assumes the
following form:

ln(u − cn) =
(

u − cn + qnpn −pn

q2
npn u − cn − qnpn

)
, (2.9)

and consequently the monodromy matrix

TN (u, {cn}) =
(

AN (u) BN (u)

CN (u) DN (u)

)

now involves the inhomogenity parameters {cn}Nn=1. Its elements then are as given
below

AN (u, {cn}) = uN +
(∑N

i=1
qipi −

∑N

i=1
ci

)
uN−1 + . . . (2.10a)

BN (u, {cn}) =
(
−
∑N

i=1
pi

)
uN−1 + . . . (2.10b)

CN (u, {cn}) =
(∑N

i=1
q2

i pi

)
uN−1 + . . . (2.10c)

DN (u, {cn}) = uN −
(∑N

i=1
qipi +

∑N

i=1
ci

)
uN−1 + . . . (2.10d)

Thus, in general AN,DN are polynomials of degree N , while BN and CN are
polynomials of degree N − 1 in the spectral parameter. Furthermore, in this case

det ln(u − cn) = (u − cn)2

so that

det TN (u, {cn}) =
N∏

n=1

(u − cn)2 (2.11)

The involutive, independent integrals of the system are now obtained as the
coefficients of trace of the monodromy matrix. That is,

trTN (u, {cn}) = AN (u, {cn}) + DN (u, {cn})
= 2uN + H1u

N−1 + H2u
N−2

+ · · · + HN−1u + HN (2.12)
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For a three particle system i.e., N = 3

H1 = −2(c1 + c2 + c3)

H2 = 4(c3c1 +e1 c2 + c2c3) + 2(k3k2 + k2k1 + k1k3) − k3ρ3p2

− k3ρ3p1 − k2ρ2p3 − k2ρ2p1 − k1ρ1p3 − k1ρ1p2

Note that throughout this paper, we shall assume periodic boundary conditions
i.e., qn+N = qn and pn+N = pn

3. SPECTRAL CURVE AND SEPARATION REPRESENTATION

In case of Liouville integrable systems, the technique of separation of vari-
ables play a vital role in construction of analytic expressions for the action angle
variables. However, it was only in the early eighties that the connection between
separation variables and the r-matrix formalism of the quantum inverse scatter-
ing method became evident. The fact that for 2 × 2 Lax matrices, the separation
variables are given by the zeros of the off diagonal of TN (u) was first observed
by Komarov (1982). The technique was investigated in great detail by Sklyanin
(1995) and was applied to several models, such as the Goryachev–Chaplygin top,
the Neuman system (Skly anin, 1984) etc. Indeed, its subsequent application to
the O(4) Kowalevski top, by Kuznetsov, represents the culmination in a sense, of
this remarkable technique.

We shall briefly outline the connection between separation variables and
the elements of the so-called spectral curve, which is explained below. It is well
known that, an integrable Hamiltonian system possessing N independent integrals
of motion in involution, is separable, if there exists a set of Darboux coordinates
say (ui, vi)Ni=1 which satisfy a set of equations of the form

f (ui, vi, I1, I2, . . . , IN ) = 0 (i = 1, 2, . . . , N) (3.1)

These equations arise from the equation of an associated spectral curve � defined
by the following equation

det(zI − TN (u)) = z2 − P (u)z + Q(u) = 0, (3.2)

on the (u, z) plane. Here, P (u) and Q(u) are given by tr(TN (u)) and det(TN (u)),
respectively. In our case, we note that BN (u) i.e., the upper off diagonal element
of TN (u) is a polynomial of degree (N − 1), so that it can have at most (N − 1)
distinct zeros, which we shall denote by ui(i = 1, 2, . . . , N − 1). One may show
that there exists a system of differential equations for these zeros. It is easy to see
that at the zeros of BN (u), viz., ui(i = 1, 2, . . . , N − 1) the monodromy matrix
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becomes triangular, i.e.,

TN (ui) =
(

AN (ui) 0

CN (ui) DN (ui)

)
(3.3)

and therefore its eigenvalues are the diagonal elements AN (ui) and DN (ui), re-
spectively. If zi ≡ AN (ui), i = 1, 2, . . . , N − 1, then it is obvious that the set of
points (ui, zi)Ni=1 of the (u − z) plane must lie on the spectral curve �i

z2
i − P (ui)zi + Q(ui) = 0, i = 1, 2, . . . , N − 1. (3.4)

For the remaining part of this communication, we shall set zi = e−vi and shall
show that the pair (ui, vi) constitute a set of Darboux co-ordinates satisfying the
canonical brackets

{ui, uj } = {vi, vj } = 0, {ui, vj } = δij i, j = 1, 2, . . . , N − 1. (3.5)

Let us further define two quantities as follows:

uN ≡
∑N

i=1 qipi − ci

−∑N
i=1 pi

, vN ≡ −
∑N

i=1
pi,

satisfying {uN, vN } = 1 Thus altogether we have a total of N pairs of Darboux
coordinates (ui, vi)Ni=1. Having defined the above separation variables, we next
proceed to the construction of a representation of the quadratic r-matrix algebra
(2.5) in terms of these separation variables. This is easily accomplished by using
Lagrange interpolation. For instance, we may express BN (u) in terms of its zeros
u1, u2, . . . uN−1 as

BN (u) = uN

N−1∏
n=1

(u − ui). (3.6)

Furthermore, assuming these zeros to be mutually distinct we may express
any polynomial F (u) of degree less than (N − 1) in the following mannner

F (u)

BN (u)
=
∑(N−1)

i=1

F (ui)

B ′
N (ui)(u − ui)

, (3.7)

while if F (u) has degree ≥ (N − 1), then

F (u)

BN (u)
=
∑(N−1)

i=1

F (ui)

B ′
N (ui)(u − ui)

+ G(u) (3.8)

where G(u) is a polynomial of appropriate degree. In the present case since AN (u)
and DN (u) are polynomials of degree N , we have the following representations
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for them,

AN (u)

= BN (u)


u +

(
uNvN +∑(N−1)

i=1 ui

)
uN

+
∑N−1

i=1

e−vi

B ′
N (ui)(u − ui)


 (3.9)

DN (u)

= BN (u)


u +

(
uNvN +∑(N−1)

i=1 ui + 2
∑N

i=1 ci

)
uN

+
∑N−1

i=1

detTN (ui)evi

B ′
N (ui)(u − ui)




(3.10)

since

det TN (ui) = AN (ui)DN (ui) = e−vi DN (ui) (3.11)

The representation for CN (u) follows from the relation

det TN (u) = An(u)DN (u) − BN (u)CN (u)

so that

CN (u) = AN (u)DN (u) − detTN (u)

BN (u)
(3.12)

with AN (u),DN (u), and BN (u) as given by the relations (3.9), (3.10), and (3.6)
while

det TN =
1∏

n=N

detln(u − cn) =
N∏

n=1

(u − cn)2.

We shall now proceed to show that the above representations for the elements of
TN (u) does indeed reproduce the quadratic r-matrix algebra. For example,

{BN (u), AN (v)} =
{

BN (u), BN (v)

[
v + (unvN +∑(N−1)

i=1 ui)

vN

+
∑N−1

i=1

e−vi

B ′
N (ui)(v − ui)

]}
= BN (v)

{
BN (u),

v + (unvN +∑(N−1)
i=1 ui)

vN

+
∑N−1

i=1

e−vi

B ′
N (ui)(v − ui)

}
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since {BN (u), BN (v)} = 0.

= BN (v){vN, uN }
N−1∏
n=1

(u − ui) + BN (v)
∑N

i=1

− 1vN

i=1∏
k=1

(u − uk){−ui, e
vi } 1

B ′
N (ui)(v − ui)

N−1∏
k=i+1

(u − uk)

= −BN (v)BN (u)

vN

+ BN (v)BN (u)

u − v

∑N−1

i=1

e−vi

B ′
N (ui)

(
1

v − ui

− 1

u − ui

)

= −BN (v)BN (v)

vN

+ BN (u)BN (v)

u − v

(
AN (v)

BN (v)
− v + uNvN +∑(N−1)

i=1 ui

uN

− AN (u)

BN (u)
+ u + uNvN +∑(N−1)

i=1 ui

vN

)

×{BN (u), AN (v)} = 1

u − v
(BN (u)AN (v) − BN (v)AN (u)).

It is also straight forward to show that detTN (u) is a Casimir, i.e., its Poisson
brackets with the elements of TN (u) vanish.

4. FACTORIZED SEPARATION

From the above discussion, it is obvious that we have at our disposal two
sets of local variables – the first set consisting of (qi, pi)Ni=1, in terms of which the
local Lax matrices are represented and a second set consisting of the separation
variables (ui, vi)Ni=1. The two sets of variables being connected by the separation
map Si given by

BN (ui) = 0, evi = AN (ui) i = 1, 2, . . . , (N − 1) (4.1a)

while

uN =
∑N

i=1(qipi − ci)

−∑N
i=1 pi

, vN = −
∑N

i=1
pi. (4.1b)

The concept of factorized separation has recently been introduced by Christiansen
et al., (1993) to obtain an inverse of the separation map. Indeed, the mapping
SN between the original local variables (pi, qi) and the separation variables is in
effect a rather complicated canonical transformation and to obtain its generating
function is a tedious task. The same also holds for the inverse mapping which
relates the separation variables to the local variables appearing in the Lax operators.
Christiansen et al., (1993) made the remarkable observation that not only does the
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inverse mapping S−1
N exist but that it could also be factorized as a chain of more

simpler, at least in principle, canonical transforms, thus leading to the solution of
the inverse problem.

We note that the N -site monodromy matrix may also be expressed as

TN (u) = lN (u − cN )TN−1(u) =
(

u − cN + qNpN −pN

q2
NpN u − cN − qNpN

)
TN−1(u),

(4.2)
while

TN−1(u) = l−1
N (u − cN )TN (u) = AdjlN (u − n)

detlN (u − cN )
TN (u). (4.3)

If we formally denote

TN−1(u) =
(

AN−1(u) BN−1(u)

CN−1(u) DN−1(u)

)
, (4.4)

then it is obvious that BN−1(u) is a plynomial of degree (N − 2) while AN−1(u)
and DN−1(u) are polynomials of degree (N − 1) in u. Moreover, by analogy with
their earlier counterparts, let ũj (j = 1, 2, . . . , (N − 2)) denote the zeros of BN−1,
so that

BN−1(u)(ũj ) = 0, j = 1, 2, . . . , (N − 2) (4.5)

and let

e−vi = AN−1(ũj ), j = 1, 2, . . . , (N − 2) (4.6)

while

ũN−1 =
∑N−1

i=1 (qipi − ci)

−∑N−1
i=1 pi

, ũN−1 = −
∑N−1

i=1
pi (4.7)

As before AN−1(u) and DN−1(u) may in view of (4.5) and (4.6) be expressed by
Lagrange interpolation formulae in the undermentioned forms:

AN−1(u) = BN−1(u)

[
u + (ũN ṽN +∑(n−2)

j=1 ũj

)
ũN

+
∑N−2

j=1

e−ṽj

B ′
N (ũj )(u − ũj )

]
(4.8a)

DN−1(u) = BN−1(u)

[
u + (ũN ṽN +∑(n−2)

j=1 ũj + 2
∑N

i=1 ci)

ũN

+
∑N−2

j=1

detTN−1(ũj )eũj

B ′
N−1(ũj )(u − ũj )

]
(4.8b)
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while

BN−1(u) = ũN−1

N−1∏
j=1

(u − ũj ). (4.9)

Let XN denote the mapping from the separation variables ui, vi(i =
1, 2, . . . , (N − 1)) to the new separation variables ũj , ṽj (j = 1, 2, . . . , (N − 2)
which parameterize TN−1(u) and into the pair of local variables qN and pN . From
(4.3), since detlN (u − cN ) = (u − cN )2, we see that TN−1(u) = AdjlN (u−cN )

(u−cN )2 TN (u)
has a second order pole at u = cN . As TN−1(u) does not have any singularities,
consequently upon equating the residue at u = cN to zero, we have

lim
u→cN

d

du
[Adj lN (u − cN )TN (u)] = 0, (4.10)

which leads to the following relations:(
−qNpN pN

−q2
NpN qNpN

)
= 1

�

(
AN (cN ) BN (cN )

CN (cN ) DN (cN )

)(
d
du

DN (u) − d
du

BN (u)

− d
du

CN (u) d
du

AN (u)

)
u=cN

(4.11)
where

� =
[

d

du
AN (u)

d

du
DN (u) − d

du
BN (u)

d

du
CN (u)

]
u=cN

. (4.12)

Hence

pN = 1

�

[
−AN (cN )

d

du
BN (u) + BN (cN )

d

du
AN (u)

]
u=cN

(4.13)

and

qN =
[

−CN (u) d
du

BN (u) + DN (u) d
du

AN (u)

−AN (u) d
du

BN (u) + BN (u) d
du

AN (u)

]
u=cN

(4.14)

Equations (4.13–4.14) determine the N th local variables in terms of the separa-
tion variables (ui, vi)|Ni=1. To determine the remaining local variables we adopt a
recursive procedure. To this end we shall first consider the mapping

XN : (�u, �v) �→ (�̃u, �̃v|qN, pN ), (4.15)

where �u = (u1, u2, . . . , uN ) etc. Next if we consider the mapping XN−1 given by,

XN−1 : (�̃u, �̃v|qN, pN ) �→ ( �̃̃u, �̃̃v|qN, pN ; qN−1, pN−1) (4.16)

then it is obvious that the composition of these two mappings,

xN−1 ◦ XN : (�u, �v) �→ ( �̃̃u, �̃̃u|qN, pN ; qN−1, pN−1) (4.17)
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Therefore the composition of N such mappings viz.,

X1 ◦ X2 ◦ . . . ◦ XN−1 ◦ XN : (�u, �v) �→ (�q, �p) (4.18)

leads to a transformation from the separation variables (ui, vi)|Ni=1 to the local
variables (qi, pi)Ni=1, which is precisely the definition of S−1

N i.e.,

S−1
N = X1 ◦ X2 ◦ . . . ◦ XN−1 ◦ XN (4.19)

Equation (4.19) represents the separation factorization chain of the inverse map-
ping from the separation variables to the local variables occurring in the Lax
operators.

In the present case, the mapping XN will be explicitly derived in the following
manner (Christiansen et al., 1993). From Eq. (4.2) we obtain

BN (u) = (u − cN + qNpN )BN−1(u) − pNDN−1(u) (4.20)

If this equation is evaluated at u = ũj (j = 1, 2, . . . , N − 2) i.e., at the zeros of
BN−1(u) then one obtains the following relation

BN (ũj ) = −pNDN−1(ũj ) j = 1, 2, . . . , N − 2 (4.21)

BN (ũj ) = −pN {detTN−1(ũj )eṽj } j = 1, 2, . . . , N − 2 (4.22)

= −pN

N−1∏
k=1

(ũj − ck)2eṽj

Again from (4.3) we obtain

BN−1(u) = 1

detlN (u − cN )
[(u − cN − qNpN )BN (u) + pNDN (u)] (4.23)

Its evaluation at u = ui gives

(ui − cN )2BN−1(ui) = pNDN (ui) i = 1, 2, . . . , N − 1 (4.24)

Substituting expressions for BN (u) and BN−1(u) from (3), and (4.9), respectively,
and DN−1(u) from (4.8b) into (4.20) and equating the leading order terms, we
obtain from the coefficient of uN−1,

vN = ṽN−1 − pN. (4.25)

However, it is also follows from the definitions of (uN, vN ) and (ũN−1, ṽN−1) as
given in (4.1b) and (4.7), respectively that

uNvN =
∑N

i=1
(qipi − ci) and ũN−1ṽN−1 =

∑N−1

i=1
(qipi − ci), (4.26)

so that their difference i.e.,

uNvN − ũN−1ṽn−1 = qNpN − cN . (4.27)
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Now, from (4.25) and (4.27), we may solve for vN and ṽN to obtain,

vN = pNũN−1 + qNpN − cN

uN − ũN−1
(4.28a)

ṽN−1 = pNuN + qNpN − cN

uN − ũN−1
(4.28b)

Equating the coefficients of uN−2 in (4.20), we obtain

−vN

∑N−1

i=1
= ṽN−1

{−
∑N−2

j=1
ũj + (qNpN − cN )

}+ pN

(
ũN ṽN + 2

∑N−1

i=1
ci

)
leading to

pN = −vN

∑N−1
i=1 ui + ṽN−1

(∑N−2
j=1 ũj + cN

)
(
ũN ṽN + 2

∑N−1
i=1 ci + qN ṽN−1

) . (4.29)

Substituting the expressions for vN and ṽN−1 from (4.28a,b) into (4.29) yeilds the
following quadratic expressions for pN (qN, �u, �̃u, {ci}) namely,

p2
N (qN + uN )(qN + ũN−1) + pN [(qN + ũN−1)

(∑N−1

i=1
ui − cN

)
− (qN + uN )

(∑N−2

j=1
ũj + cN

)+ 2
∑N−1

i=1
ci(uN − ũN−1)]

+ cN

[
cN +

∑N−2

j=1
ũj −

∑N−1

i=1
ui

] = 0. (4.30)

Incidentally, if we set ci = 0 for all i = 1, 2, . . . , N , then (4.30) leads to the
following linear expressions for pN

pN =
[ ∑N−2

j=1 ũj

qN + ũN−1
−
∑N−1

i=1 ui

qN + uN

]
(4.31)

On the other hand, from (4.22), we get

e−ṽj = −pN

∏N−1
k=1 (ũj − ck)2

BN (ũj )
= −pN

∏N−1
k=1 (ũj − ck)2

vN
∏N−1

k=1 (ũj − vk)
, j = 1, 2, . . . , N − 2

(4.32)
Upon substituting vN from (4.28a), we get

e−ṽj = − pN (uN − ũN−1)

pN (qN + ũN−1) − cN

N−1∏
k=1

(ũj − ck)2

(ũj − uk)
, j = 1, 2, . . . , N − 2 (4.33)
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Finally, from (4.24), we have upon using the expressions for BN−1(ui) and DN (ui)
obtained from (4.9) and (3.11), respectively, the following relation,

e−ṽj = pN

ṽN−1(ui − cN )2

∏N−1
m=1(ũi − cm)2∏N−2
j=1 (ũi − ũj )

, i = 1, 2, . . . , N − 1. (4.34)

when using (4.28b), to eliminate ṽN−1, we get

e−ṽj = pN (uN − ũN−1)

pN (qN + ũN−1) − cN

1

(ui − cN )2

×
∏N−1

m=1(ũi − cm)2∏N−2
j=1 (ũi − ũj )

, i = 1, 2, . . . , N − 1. (4.35)

Thus, the mapping XN is formally defined by the following relations

p2
N (qN + uN )(qN + ũN−1) + pN

[
(qN + ũN−1)

(∑N−1

i=1
ui − cN

)

− (qN + uN )
(∑N−2

j=1
ũj + cN

)+ 2
∑N−1

i=1
ci(uN − ũN−1)

]

+ cN

[
cN +

∑N−2

j=1
ũj −

∑N−1

i=1
ui

] = 0 (4.36)

e−vi = pN (uN − ũN−1)

pN (qN + uN ) − cN

1

(ui − cN )2

×
∏N−1

m=1(ũi − cm)2∏N−1
j=1 (ũi − ũj )

, i = 1, 2, . . . , N − 1 (4.37)

and

e−ṽj = − pN (uN − ũN−1)

pN (qN + ũN−1) − cN

N−1∏
k=1

(ũi − ck)2

(ũj − ũk)
, j = 1, 2, . . . , N − 2 (4.38)

together with the relation

vN = pN (ũN−1 + qN ) − cN

uN − ũn−1
, ṽN−1 = pN (uN + qN ) − cN

uN − ũn−1
(4.39)

For the special case when ci = 0, for all i = 1, 2, . . . , N these expressions reduce
to the following

pN =
[ ∑N−2

j=1 ũj

qN + ũN−1
−
∑N−1

i=1 ui

qN + N

]
, vN = pN (ũN−1 + qN )

uN − ũN−1
,

ṽN−1 = pN (uN + qN )

uN − ũN−1
(4.40a,b,c)
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e−vi = uN − ũN−1

(qN + uN )

u2
i∏N−2

j=1 (ui − ũj )
i = 1, 2, . . . , N − 1. (4.40d)

e−vj = −uN − ũN−1

qN + ũN−1

N−1∏
k=1

(ũ2
j

(ũj − uk)
j = 1, 2, . . . , N − 2. (4.40e)

It is easy to verify that the expressions given in Eq. (4.40 a–e ) are derivable from
the following generating function F (qN ; �u�̃u), by means of the following mapping
XN :

vi = ∂F

∂ui

i = 1, 2, . . . , N.

ṽj = ∂F

∂ũi

j = 1, 2, . . . , N − 1.

pN = − ∂F

∂qN

. (4.41)

with

F (qN ; �u�̃u) =
[

−
∑N−2

j=1
ũj

]
log(qN + ũN−1) +

[∑N−1

i=1
ui

]
log(qN + uN )

+
[∑N−2

j=1
ũj −

∑N−1

i=1
ui

]
log(uN − ũN−1)

+ 2(N − 1)
∑N−2

J=1
�(ũj ) − 2(N − 2)

∑N−1

i=1
�(ũj )

+
∑N−1

i=1

∑N−2

j=1
�(ui − ũj ) + iπ (N − 2)

∑N−2

j=1
ũj (4.42)

where �(u) = ∫ log(u)du + c(constant). The generating function for the subse-
quent mapping XN−1 is obtained by replacing N by N − 1 and so on. The above
formulae thus describe explicitly the inverse separation map S−1

N and by virtue of
the existence of a generating function for each stage we conclude that the inverse
separation map is canonical.

5. DISCUSSION

In this communication we have studied the nature of the inverse separation
transformation between the local nonlinear variables of a discrete integrable sys-
tem, and the corresponding separation variables of the system. The novel feature
of the methodology used is the fact that this separation transformation can be fac-
torized into a sequence of transformations, each with its corresponding generating
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function. The latter clearly is indicative of the canonical nature of the separation
transformation.
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